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ABSTRACT 

In this paper we determine the smallest number h = h(k, n) having the follow- 
ing property: I f ~  is any finite family of convex sets in Euclidean n-space, and 
if the intersection of every h or fewer members of 24 is at least k-dimen- 
sional, then the intersection of all members of ~ is at least k-dimensional. 

Let  F"  be an  n-dimensional  vector space over an ordered field F .  Suppose f# 

is a finite collection o f  convex subsets of  F". A well known theorem by E. Helly 

[2, p. 102-108] asserts: I f  every subfamily ~ of  N of  cardinali ty I o~ I < n + 1 

has non-empty  intersection, then n N  ~ ~. Simple examples show that  the 

number  n + 1 appearing in Helly 's  theorem cannot  be replaced by any smaller 

number.  It  is the purpose of  this paper  to determine, for 0 < k < n, the smallest 

number  h = h(k, n) having the following property.  

PROPERTY A(k, n). I f  ~ is any finite fami ly  of convex subsets of F ' ,  

and for  every subfamily ~ of fY of cardinality [ ~ [  < tl, dim ~ > k, then 

dim n cff => k.  ( n ~ -  denotes the intersection o f  all members  o f ~ ,  dim K de- 

notes the dimension of  the convex set K.) 

Define, for  O <  k <  n, O <  n < oe : 

~ n + l  if k = 0 ,  
c(k,n) = ~ m a x ( n + l , 2 n - 2 k + 2 )  if 1 <  k-<_ n.  

(Note  that  c ( k , n ) = 2 n - 2 k + 2 i f  1__< k _-< ½(n + l ) ,  c ( k , n ) = n + l  if k = 0  

or  ½(n + l) _< k _< n.)  

THEOREM. h(k,n) = c(k,n) for 0 N k <- n. 

* The contents of this paper forms part of the M.Sc. thesis written by the author under the 
supervision of Professor Micha A. Perles at the Hebrew University of Jerusalem and submitted 
in October, 1968. 
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REMAR~:S. The case k = 0 of our theorem is simply Helly's theorem. The 

case k = n follows easily by applying Helly's theorem to the family (int K:  K e f~}. 

(Here in tK  denotes the interior of K. )  The case k = 1 was proved by several 

authors. (See [3] for a more detailed historical review.) B. Grtinbaum attempted 

to determine h(k, n) in [3], but the values given by him are incorrect for 2 < k 

< n - 1 .  These incorrect values are quoted in [2, §4.1j. (Grtinbaum proves 

correctly that h(k, n) < 2 n -  k for 1 < k < n, but claims without proof that the 

opposite inequality holds.) 

The following lemma will reduce our theorem to the special case where g is 

a family of polyhedral convex cones and n N is a linear subspace of F". 

LEMMA. Let f~ = {K1," ' ,Kt} be a finite family of convex sets in E" with 

non-empty intersection. Then there exists a family f~' = {CI, '" ,  Ct} of convex 

polyhedral cones with apex 0 having the following properties: 

l ) f o r  any subset S of {1,...,t}, dim n{Ki :  i eS}  = dim n{Ci:  i eS} ;  

2) n ti=~Ci is a linear subspace of F". 

PROOF. Let T = {1, ..., t}. For each subset S of T choose a convex polytope 

Ps such that P s c  n { K i : i e S }  and dim P s = d i m n { K , : i e S } .  For each 

i s T l e t  Q i = c o n v U { P s : S c T a n d  i eS} .  Each Qi is a convex polytope, 

Oi c Ki, and if S c Tthen  Ps ~ {nQi:  i eS}  ~ n{Ki :  i eS} ;  hence, dim n {Qi: 

i sS}  = d i m n { K ~ : i s S } .  Note that Pr # ¢ ,  since n { K , : i s T } #  ¢. Now 

choose a point z in the relative interior of PT, and let Ci = coneo(Qi-z)  = 

w{2(Qi-z):O < ),eF} be the cone with apex 0 spanned by Q i - z .  Each C, 

is a polyhedral convex cone, and if S c T, then 

N{ci: i s} = c o n e o ( n { Q , :  i e S} -- z), 

and 

d i m n { c i :  i s  S} = d i m n { Q i :  i s  S} = dimr~{Kf: i s  S}, 

, C since zeQ~ for all i s  T. Moreover, n , = l  i = c o n e o ( n t ~ = l Q i - z ) i s  a linear 

subspace of F", since z s relint n ~ = 1 Qi. This concludes the proof of the lemma. 

PROOF OF THEOREM. We have to show, for 1 < k ____ n, that e(k, n) is the 

smallest number h having property A(k, n). Now, if h has property A(k, n), then 

h + 1 has property A(k, n) as well. It therefore suffices to show: 

a) c(k,n) has property A(k,n). 

b) c ( k , n ) -  1 does not have property A(k,n). 
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We first p rove  a) by induct ion on n.  The  case n = 1 is trivial.  Suppose n > 2 ,  

and let c = c(k, n). We have to establish, for  all natural  numbers  t ,  the following 

asser t ion:  

P ( t ) : / f ~ ¢  = {C1," ' ,C ,}  is a fami ly  o f t  convex subsets o f F  , and dim n ~  => k 

for all ~ c fY with [ ~1  <= c then d i m n ~  > k .  

Assert ion P(t)  is trivial for  t < c.  I f  t > c,  then P( t  + 1) follows easily f rom 

P(t)  as fol lows:  I f  N = { K 1 , ' " , K , + I } ,  and d im ~ > k for  all ~ c ~ with 

-<__ c,  then d im c~ f f  > k for  all . ~ - c  ~¢ with I ~ l  < t ,  by P(t). Let  

N ' = { K i c ~ K ~ + I :  1_< i _ < t } .  Then  d i m n ~ - ' >  k for  all ~ ' c ~ ¢ '  with 

I o~'[  = t -  1 __> c,  and therefore  d i m n  fY' > c, again by P( t ) .  But n N '  = c~ f¢. 

It  remains  to prove  assert ion P(c + 1). Let  c¢ = { C I , " ' ,  Co+ 1} be a family 

of  c + t convex subsets o f  F" ,  and suppose d im c ~  > k for  all o~ ~ ~ with 

I f f l  < c.  We shall show since that  d im n f ¢ >  k.  By Hel ly ' s  t heorem we know 

that  n ~f ~ ~,  since c > n + 1. We may  therefore  assume,  using the l emma,  

that  each C i is a polyhedra l  convex cone with apex 0,  and that  n N is a l inear 

subspace of  F" .  

Suppose d im c~ c5 = l <  k .  We distinguish two cases and obtain  a contra-  

dict ion in each case. 

Case 1. 1 > 0 .  

Let H ~ F "  be a hyperp lane  through 0,  such that  r~ ~ ¢ H. Hence  

d im H n ( n if) = l - 1 < k -  1. I f  o ~ c ~f, then H is not  a suppor t ing hyperplane  

of  c~ ~ - ,  since H does not  even suppor t  n N.  I t  follows that  if  ~-  c N,  I ~ ] --< c, 

then d i m H  c~(c~o~) = d im c~ o ~ -  t > k - 1 .  D e f i n e N ' = { H  c~ Cx, ...,Hc3Cc+l} 

Note  tha t  c ( k - l , n - 1 ) _ _ <  c(k,n) = c. Therefore ,  if  ~ c N '  and  [ f f !  __< 

c ( k - 1 , n - 1 ) ,  then d im o ~ > k - 1 .  I t  follows by the induct ion hypothesis  that  

d im n (¢' > k - 1 .  But c~ (¢' = H c~ ( n ~ ) ,  and we have seen tha t  

d im H c~ (r~ f¢)) = l -  1 < k -  1, a contradict ion.  

Case 2. l = 0 .  

In  this case c ~ N =  n 2 ~ c i = { 0 } .  Define, for  1 < i < c + l :  C_ i =  

n {C i: 1 _-< j _-< c + 1, j ~ i}. By assumpt ion ,  d i m C _  t > k for  1 < i < c + l .  

A m o n g  all ( c +  1)-tuples (al," ' ,ac+a) such that  a ieC_  i for  1 _ < i N  c +  1 

choose one, say (b~ , . . . , b~+l ) ,  of  maximal  rank  (l inear dimension).  Suppose 

rank(b,,. . . ,b~+O = m (m <-n) and assume,  for  convenience 's  sake, tha t  

rank(b, , . . . ,b, ,)  = m.  Let  B = {bl , . . . ,b , ,} .  I f  m < i < c + 1, and a i e C _ , ,  

than  ai is a l inear combina t ion  of  B,  because of  the maximal  r ank  of  B.  Suppose 
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a~ = ]~ r~s+ e , b , -  E r~s-erb, ,  where S+,S_  are disjoint (possibly empty) 

subsets of {1, . . - ,m}, and O < c ~ , • F  for r e S + U S _ .  Let z =  ]g, ,s+e,b,  

= a t +  ~ , ~ s _ C @ , .  If l _ _ < j <  c + l  and j ¢ S + ,  then b r • C - r c C j  for all 

r • S + .  Hence zeC~ .  I f j • S + ,  then j ¢ S _  tA {i}, and again b , • C _ ~ c  Cj for 

all r • S _  and also a i • C _ ~ c  Cj. Hence z • C j .  

It  follows that z • cTN = {0}, and therefore S+ = ¢. 

If  m +  1 ___ i < j  _<__ c +  1, and a~•C_t ,  a j • C _ j ,  then we have, by the pre- 

ceding paragraph. : 

a i =  - E c~,br, aj = -  ~Z a~b, 
r e S ~  r e S ~  

where Si, S ~ c {1,. . . ,m} and C~r,~' r > 0. 

Let 

z = - • min(~,, a',)br, 
r e S i n S t  

T = (S t - Sj) U {r • S t c7 Sj: o~, > ~z',}, 

T'  = ( S j -  Si) U { r e S t  n S j :  ~', > ~,}. 

Tand  T '  are disjoint subsets of B. 

Since 

z = a, + Z a , b , -  Z min(ar,~;)br 
r ~ S; r~ S tnS .¢  

= aj + Z c~'~br- Z min(~r,a;)br,  
re S 1 re Si n S j  

we see that z can be written as a positive linear combination of either one of the 

disjoint sets {ai} U {b,: r e T}, {a j} U {br: r e T'}. It follows as in the preceding 

paragraph, that z • C r  for all 1 <_ r <- c + 1. Hence z = O, St n S i = ¢. 

Now choose points a ieC_  t for m + 1 -< i _< c + 1. With each point a~ we 

associate a subset St of {1,.- . ,m}, as above, suuch that a t = - Y-,r~s,~,,b,, 

O < a , • F .  

Since dim C- t  > k, we can choose a point ai • C-i  which is not a linear combina- 

tion of fewer than k points in B, and therefore ]Sil > k.  The sets Sin+l, "" ,Sc+t  

are pairwise disjoint. Hence 

(c + 1 - m ) k  < m .  

Since m < n we obtain ( c + l - n ) k <  n, or c ( k , n ) = c < n / k + n - l .  To 
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derive a contradiction, we show that c(k, n) >n/Ic + n - 1 .  Indeed, if ½(n + 1) 

< k <  n, then c ( k , n ) =  n + l > n / k + n - 1 .  I f  1 < k < ½ ( n + l )  t henc (k ,n )  

= 2n - 2k + 2 and n > 2k, and therefore 

(c(k,n) + 1 - n ) k - n  = (n + 3 - 2 k ) k - n  = n ( k - 1 )  + 3 k - 2 k  2 

> 2 k ( k - 1 ) + 3 k - 2 k  2 = k > 0 .  

This concludes the proof  of  a). 

We now prove b), i.e., c(k, n) - 1 does not have property A(k, n). This is done 

by constructing examples of finite families f~ of convex sets in F ", such that 

dim n ff < k,  but dim n o~ > k for every subfamily Y of ~ with [ ~ [ < c(k, n) - 1. 

Let el, "", e, be a linear basis ofF" .  Each point x e F" can be expressed uniquely 
n 

as x = Z ~= 1 ~iei, ~i e F.  

Case 1. 1 <  k < ½(n + l ) .  In this case c(k,n) = 2 n - 2 k  + 2. Let 

f~ = {A 1, ...,A2~ } , where 

A, = {x ~ F " : ~  => 0}, 

A ~ + / = { x ~ F " : ~ < 0 }  for l _ < i < n .  

Then n f¢ = {0}, i.e., dimCh ~ = 0, but the intersection of every 2n - 2k + 1 

members of  fY is at least k-dimensional. 

Case 2. k = 0  or ½ ( n + l ) < k < n .  In this case c ( k , n ) = n + l .  Let 
t t I ! ! 

fY' = {Ao,A~, . . . ,A ,}  where A0 = {x~F":  ~ L ~ ,  < - 1 } ,  and A, = {xEF":  

~.f > 0} for 1 < i < n. Then n ~ '  = ~. I.e., d i m n f ¢ '  = - 1 ,  but the inter- 

section of every n members of fY' is n-dimensional. 

This concludes the proof  of b), and we have therefore proved our theorem. 

We now outline an alternate proof  of our theorem, which uses the following 

result of  Bonnice and Klee r l ,  corollary 2.12]: 

Let e be an integer, 0 < e <_ n. I f  fY is a finite fami ly  of polyhedral convex 

cones with apex 0 in F", and if  N f¢ = {0}, then there exists a subfamily o ~ 

of cj with [ ~ 1  < max(n + 1 , 2 ( n - e ) )  and dim ~ ~- < e. 

(The original version of corollary 2.12 in [1] deals with an arbitrary (possibly 

infinite) family of closed convex cones in R". The restriction to finite families 

of  polyhedral cones is necessary if we work with an arbitrary ordered field F 

instead of the real field R). 

Let f~ = {C1,..., Ct} be a finite family of  convex polyhedral cones with apex 

0 in F ", and suppose n ~ is a linear subspace of F ". Assume that dim n ~ _--- k 

for al lc3o ~ with 1°~I < c ( k , n )  but d i m c q f q =  l < k ( l _ < k _ <  n). 
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I f  l > 0, then we reduce the dimension by one and obtain a contradiction to 

the case k -  1, n -  1 of our theorem, as in case 1 of  the previous proof. I f  I = 0, 

then we apply the quoted result of  Bonnice and Klee with e = k -  1, and find 

a subfamily o ~ of f¢ with I ~ ] < m a x ( n + l , 2 ( n - k + l ) ) = c ( k , n )  and 

dim n o~ < k - 1  < k,  a contradiction. 

REMARK. The result quoted above, which is essentially the bracketed part  of  

[-1, 2.12] follows clearly from our theorem, with k = e + 1. The unbracketed 

part  of  [1,2.12] follows quite easily from the bracketed part. The principal 

result of section 2 of [1], theorem 2.5, follows easily from [1, 2.12] via [1, 2.11] 

and [1, 2.6]. The proof  given in this paper can thus serve as an alternative ap- 

proach to section 2 of [1]. 

We conclude the paper  with an open problem due to Micha A. Perles. Let 

fY = { K 1 , . . . , K , }  be a finite family of convex subsets of  F".  Let T = {1,.. . , t} 

and define for S ~ T:  d(fY, S) = dim n {Ks: i e S}. From our theorem it follow 

that 

d(f~, T) = min{d(f~, S): S c T, I sl <= 2 . }  

The value of d(f~, T) is thus determined by the values of  d(~, S) for S c T, 

I SI <__ 2n. It  is not hard to show that the number 2n in the previous statement 

can be replaced by 2 n - t  if  n => 2. Can it be replaced by any smaller number? 

More specifically, we ask for the smallest number h = h(n) having the following 

property:  

I f  ~ = { K ~ : i e T }  and ~ ' =  {K~: i~T}  are two finite families of  convex 

subsets of F", and if d(f¢,S) = d(N' ,S)  for all S ~ T with IS[ __< h(n) then 

d(N,T)  = d ( ~ ' , T ) .  All we know is that n + 1 < h(n) < 2 n - 1  for n > 2. 

I conjecture that h ( n ) = n +  1 for all n. 
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